Sphingosine-1-phosphate receptor subtype-specific positive and negative regulation of Rac and haematogenous metastasis of melanoma cells.
نویسندگان
چکیده
We have recently reported that S1P (sphingosine-1-phosphate) differentially regulates cellular Rac activity and cell migration in either a positive or a negative direction via distinct G-protein-coupled receptor subtypes, i.e. S1P1/Edg1 (endothelial differentiation gene) and S1P2/Edg5 respectively, when each of the S1P receptor subtypes is expressed in CHO (Chinese-hamster ovary) cells. In B16F10 mouse melanoma cells, in which S1P2, but not the other S1P receptor subtypes, is endogenously expressed, S1P inhibited cell migration with concomitant inhibition of Rac and stimulation of RhoA in dose-dependent manners. Overexpression of S1P2 in the melanoma cells resulted in potentiation of S1P inhibition of both Rac and cell migration. In contrast, overexpression of S1P1 led to stimulation of cell migration, particularly at the lower S1P concentrations. Treatment of B16F10 cells with S1P inhibited lung metastasis 3 weeks after injection into mouse tail veins. Intriguingly, overexpression of S1P2 greatly potentiated the inhibition of metastasis by S1P, whereas that of S1P1 resulted in aggravation of metastasis. Suppression of cellular Rac activity by adenovirus-transduced expression of N17Rac, but not N19RhoA, strongly inhibited cell migration in vitro and lung metastasis in vivo. These results provide the first evidence that G-protein-coupled receptors could participate in the regulation of metastasis, in which ligand-dependent, subtype-specific regulation of the cellular Rac activity is probably critically involved as a mechanism.
منابع مشابه
Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells.
Previous studies demonstrated that sphingosine-1-phosphate (S1P) induced migration of human umbilical vein endothelial cells (HUVECs) whereas it inhibited that of vascular smooth muscle cells (SMCs). This study explored the molecular mechanisms underlying the contrasting S1P actions on vascular cell motility. In rat and human aortic SMCs, the chemoattractant platelet-derived growth factor B-cha...
متن کاملInhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3.
Sphingosine-1-phosphate (S1P) is a bioactive lysophospholipid that induces a variety of biological responses in diverse cell types. Many, if not all, of these responses are mediated by members of the EDG (endothelial differentiation gene) family G protein-coupled receptors EDG1, EDG3, and EDG5 (AGR16). Among prominent activities of S1P is the regulation of cell motility; S1P stimulates or inhib...
متن کاملTumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1 - Jekyll Hidden behind Hyde.
Sphingosine-1-phosphate (S1P) is a plasma lipid mediator with multiple roles in mammalian development, physiology and pathophysiology. It is constitutively produced mostly by erythrocytes by the action of sphingosine kinase 1 (SphK1), resulting in high (∼0.5 micromolar) steady-state plasma S1P content and steep S1P concentration gradient imposed between plasma/lymph/tissue interstitial fluid. S...
متن کاملInhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine-1-phosphate receptor isoform.
The G protein-coupled receptors S1P2/Edg5 and S1P3/Edg3 both mediate sphingosine-1-phosphate (S1P) stimulation of Rho, yet S1P2 but not S1P3 mediates downregulation of Rac activation, membrane ruffling, and cell migration in response to chemoattractants. Specific inhibition of endogenous Galpha12 and Galpha13, but not of Galphaq, by expression of respective C-terminal peptides abolished S1P2-me...
متن کاملبررسی بیان شاخصهای سطحی CD133، CD44 و ABCG2 در ردههای سلولی ملانوما و ارتباط آنها با سلولهای بنیادی سرطان
Background and Objective: Melanoma is the most deadly type of skin cancer that has a high potency and rapid metastasis to other organs. It appears that cancer stem cells (CSCs) are responsible for invasion and metastasis. The aim of this study was to investigate the expression of cancer stem cells candidate markers and their association with stemness features in mel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 374 Pt 3 شماره
صفحات -
تاریخ انتشار 2003